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Abstract

In a respirator fit test, a subject is required to perform a series of exercises that include moving the 

head up and down and rotating the head left and right. These head movements could affect 

respirator sealing properties during the fit test and consequently affect fit factors. In a model-based 

system, it is desirable to have similar capability to predict newly designed respirators. In our 

previous work, finite element modeling (FEM)-based contact simulation between a headform and 

a filtering facepiece respirator was carried out. However, the headform was assumed to be static or 

fixed. This paper presents the first part of a series study on the effect of headform movement on 

contact pressures—a new headform with the capability to move down (flexion), up (extension), 

and rotate left and right-and validation. The newly developed headforms were validated for 

movement by comparing the simulated cervical vertebrae rotation angles with experimental results 

from the literature.
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INTRODUCTION

Head movements affect respirator fit (Lee et al., 2005; Grinshpun et al., 2009) due to the 

relative position change between a respirator and a human face, potentially causing faceseal 

leaks (Crutchfield et al., 1999). The Occupational Safety and Health Administration (OSHA) 

respiratory protection regulation defines a standard eight-exercise procedure in most 

respirator fit tests. During these respirator fit tests, the exercises, specifically (i) normal 

breathing without talking; (ii) deep breathing; (iii) moving the head side to side; (iv) moving 
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the head up and down; (v) talking; (vi) grimacing by smiling or frowning; (vii) bending at 

the waist; and (viii) normal breathing, are performed in sequence (OSHA, 1999). This study 

focused on the effect of moving the head side to side and turning the head up and down on 

the contact between a respirator and a head.

Finite element modeling (FEM) has been used for studying interactions between headforms 

and respirators (Bitterman, 1991; Piccione et al., 1997; Yang et al., 2009; Dai et al., 2011). 

However, the headform model was either a rigid or deformable single shell, lacking 

biofidelity, and the respirator model was modeled by a single layer of facepiece, and lacked 

straps and the nose clip. Advanced 3D finite element (FE) models of faces were developed 

with complicated structures, including bones, fat, muscle, and skin, according to human 

facial anatomy (Chabanas et al., 2003; Barbarino et al., 2009). Using the advanced face 

models, soft tissue deformation was simulated either by displacing the bones or by imposing 

gravity loads. In another advanced 3D FE face model created by Beldie et al. (2010), facial 

expressions were simulated by contracting the facial muscles. Lei et al. (2012) reported an 

advanced model for investigating the interaction between a respirator and headform. 

However, headform movement was not considered in these simulations.

To study the effects of head movement, it is important to have a new headform model that 

can mimic human head movement. An understanding of the anatomy of the head and neck is 

critical to the development of this new headform model. Seven cervical vertebrae C1–C7 

control the head movements of extension, flexion, and rotation (Drake et al., 2005). FEM 

has been commonly used for studying behaviors of cervical spines under external loads 

(Goel and Clausen, 1998; Yoganandan et al., 2001; Ng et al., 2004; Zhang et al., 2006, 2008; 

del Palomar et al., 2008). A biomechanical model of a cervical spine typically includes 

cervical vertebrae, ligaments, intervertebral discs, facet joints, and muscles. The cervical 

spine model can be connected to a head model for controlling the head movements. 

Different kinds of head movements, including flexion, extension, axial rotation, and 

bending, were simulated by applying external loads to the FE cervical spine model (Van der 

Horst, 2002; Esat et al., 2005; Hedenstierna and Halldin, 2008; Esat and Acar, 2009; 

Hedenstierna et al., 2009). The above existing head models do not include any skin or fatty 

tissue. For contact between a respirator and a headform, the skin and fatty tissue, as well as 

respirator facepiece, have deformation. Therefore, previous rigid or single shell headform 

models with a cervical spine model are not adequate for the purpose of this study.

The ultimate goal of this study is to develop computer-based methods to simulate all of the 

exercises performed in the respirator fit test. The objective of this work is to develop new 

headform models that can simulate head movement. We describe here a new cervical spine 

model, assembly of deformable and multilayer headforms with the cervical spine model to 

form new headform models, and validation of the new headform models. In a separate paper 

(Lei et al., 2014), we will implement these newly developed headform models to study the 

effects of head movement on contact pressures between headforms and respirators.
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NEW HEADFORM MODELS

In order to have the ability to rotate, new headforms were developed that included the 

existing National Institute for Occupational Safety and Health (NIOSH) headforms (Zhuang 

et al., 2010; Lei et al., 2012) and the cervical spine model. To build the new headform, a 

cervical spine model including cervical vertebrae, intervertebral discs, ligaments, and facet 

joints was generated. Layers of skin, muscle, fatty tissue, and bone were then added to the 

headform model (Lei et al., 2012). The cervical spine model and the headform model were 

then assembled to form the new FE headforms. Finally, the head movements of the new 

headform were defined.

The main components of the cervical spine model were the cervical vertebrae C1–C7 (see 

Fig. 1), which were modeled as rigid triangular surfaces and were determined from the 

openly accessible BodyParts3D database (Mitsuhashi et al., 2009). The BodyParts3D 

database provides geometrical surfaces of body components in a whole-body model of an 

adult human male. The cervical spine model used the cervical vertebrae C1–C7 in the 

whole-body model. Each vertebra from C3 to C7 was modeled as a vertebra body and a 

posterior vertebral arch. C1 had an arch and a posterior vertebral arch, and C2 had a dens 

(odontoid process) and a posterior vertebral arch. Initial relative positions of C1–C7 

(lordotic curve) in our cervical spine model were maintained the same as those in the 

BodyParts3D whole-body model.

Five intervertebral discs were placed to separate the vertebrae C2–C7. In studies of head 

impact simulations, the intervertebral discs have been modeled as deformable FE bodies to 

calculate stresses and deformations of the intervertebral discs for injury evaluation (Goel and 

Clausen, 1998; Ng et al., 2004; Zhang et al., 2006, 2008; del Palomar et al., 2008). In the 

field of respirator study, the stresses and deformations of the intervertebral discs are not of 

concern. The intervertebral discs were therefore simplified to spherical joints. Each spherical 

joint was located at the center of the gap between two vertebral bodies of C2–C3 to C6–C7. 

The spherical joint for connecting C1 and C2 was defined as the contact point between the 

arc of C1 and the dens of C2. The back of the head (rigid), referred as C0, was combined 

with C1 by a spherical joint. C1’s two facets create a pair of condyloid joints that articulate 

C1 and the occipital bone. The pair of condyloid joints was simplified as a C0–C1 spherical 

joint. The C0–C1 spherical joint was defined at the middle point of the line connecting the 

centers of two facet surfaces of C1.

Panjabi et al. (2001) and Wheeldon et al. (2006) provided experimental results of rotations 

between two adjacent cervical vertebrae (C1–C2 to C6–C7) due to flexion, extension, and 

rotation. The load-displacement curves obtained in the experimental measurements were all 

nonlinear. In this paper, we assumed that the intervertebral discs and the ligaments equally 

contributed to the stiffness of the rotation between two cervical vertebrae, following the 

approach proposed by Van der Horst (2002). The flexion/extension stiffness of the spherical 

joint was defined as half of the flexion/extension stiffness functions of C1–C2 to C6–C7 

measured by Wheeldon et al. (2006) and Panjabi et al. (2001), and the rotation stiffness of 

the spherical joints was defined as half of the (left/right) rotation stiffness functions of C1–

C2 to C6–C7 measured by Panjabi et al. (2001). Viscoelastic behaviors of the spherical 
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joints were considered by introducing damping forces to the spherical joints using damping 

coefficients from Van der Horst (2002).

Ligaments in the cervical spine model connected adjacent cervical vertebrae and were 

modeled as discrete elements defined as lines between nodes on the cervical vertebrae. Facet 

joints in the cervical spine model linked the articular surfaces of pairs of adjacent cervical 

vertebrae (C2–C3 to C6–C7) and were modeled as discrete elements. Locations of the 

ligaments and the facet joints in the cervical spine model were taken from the literature 

(Yoganandan et al., 2001; Zhang et al., 2006, 2008; del Palomar et al., 2008). Ligaments and 

facet joints were modeled using the viscoelastic Kelvin–Voigt model, consisting of a spring 

and damper pair connected in parallel. Mechanical properties of the ligaments and the facet 

joints were based on experimental studies (Yoganandan et al., 2001). Because movements of 

the cervical spine model were driven by external moments in simulations, the cervical spine 

model did not include active muscles. Passive muscles in the neck region, modeled as a thick 

layer, were considered as a component in the headform instead of that in the cervical spine 

model. Table 1 summarizes the mechanical properties of the components in the cervical 

spine model.

Five FE headforms from NIOSH’s digital headform models previously developed by Lei et 
al. (2012) include segments of the forehead, left cheek, right cheek, chin, neck, and the back 

of the head. The facial regions have multilayer structures including skin, muscle, fatty tissue, 

and bone, head movement is not considered, and the isotropic Hooke’s law (elastic model) is 

used to define the mechanical properties of the skin, muscle, and fatty tissue.

When head movements are considered, strains of the skin, muscle, and fatty tissue would 

reach values of 20%, and hyperelastic laws should be used to obtain more realistic strain–

stress relationship (Delalleau et al., 2008). Multilayer headform models were developed, 

having the same segments and structures as the previously developed FE headforms, and 

using hyperelastic models to define the mechanical properties of the skin, muscle, and fatty 

tissue. The bones and the back of the head were simplified as rigid models. The mechanical 

properties of the headform layers are shown in Table 2.

The new headforms were formed by assembling the cervical spine model with the multilayer 

headform models. The cervical spine model and one of the multilayer headform models 

were imported into the same virtual environment in LS-PrePost software (Livermore 

Software Technology Corporation, Livermore, CA, USA). The two models were positioned 

based on the same coordinate system. A global coordinate system was defined where the z-

axis is nor-mal to the headform frontal face, the x-axis is along the lateral direction of the 

headform towards the headform frontal face’s left, and the y-axis is defined by the right-

hand rule in Fig. 1b. The origin of the global coordinate system was located at the point of 

the nasal tip. The new headform models had different types of elements shown in Table 3. 

All five newly developed headforms had the same cervical spine model but with different 

headform models from NIOSH.

The total head movements (extension, flexion, left rotation, and right rotation) were defined 

as the rotation angles with respect to the global axes. This study did not consider lateral 
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bending because the respirator fit test does not require lateral bending movement (OSHA, 

1999; Viscusi et al., 2011). The total head movements were the summation of seven relative 

movements of C0–C1 to C6–C7. Seven local coordinate systems of C0–C1 to C6–C7 were 

defined for the relative movements of C0–C1 to C6–C7. Each local coordinate origin of C2–

C3 to C6–C7 was at the center of the gap between two vertebral bodies. The local coordinate 

origin of C0–C1 was the intersection of the sagittal plane of the extended headform and the 

line connecting the centers of two facet surfaces of C1. The local coordinate origin of C1–

C2 was the contact point between the arc and den. The Xii +1−, Yii + 1−, and Zii + 1− axes of 

the local coordinate systems of Ci−Ci + 1 (i = 0, 1, 2,…, 5) were parallel to the X-, Y-, and 

Z-axes of the global coordinate system. Being fixed at Ci + 1, the local coordinate system of 

Ci − Ci + 1 had the exact same translation and the rotation as the motions of Ci + 1. For 

example, Fig. 2 presents the local coordinate system of C3–C4. When the head was in the 

neutral position gesture, the X34-, Y34-, and Z34-axes of the C3–C4 local coordinate system 

were parallel to the global coordinate axes X-, Y-, and Z-axes of the new headforms. The 

local coordinate system of C3–C4 was fixed on C4. The relative movements of C0–C1 to 

C6–C7 were defined as the relative rotations of C0–C1 to C6–C7 around their corresponding 

local coordinate axes.

VALIDATION OF THE NEW HEADFORM MODELS

To validate the new headform models, different quasistatic moment loads were applied on 

C0 (back part of the head) as shown in Fig. 1 and LS-DYNA software (Livermore Software 

Technology Corporation, Livermore, CA, USA) was used to simulate the head movements. 

In our simulations, two constraints were implemented: nodes in the cervical vertebra C7 

were set as fixed nodes that did not have translational or rotational movements during the 

simulations; bone layers under the forehead, left cheek, right cheek and chin segments, and 

the back of the head were considered as one rigid body. Table 4 gives the definitions of 

moment loads for the total head movements that included the extension, flexion, left 

rotation, and right rotation (Van der Horst, 2002).

Pure moment loads were applied to the back of the head along the X67-, and Y67-axes of 

C6–C7 local coordinate system. The pure moment loads were MX = 0.33, 0.5, 1.0, 1.5, and 

2.0 Nm (for the flexion), MX = −0.33, −0.5, −1.0, −1.5, and −2.0 Nm (for the extension), 

MY = 0.33, 0.67, and 1.00 Nm (for the left rotation), and MY = −0.33, −0.67, and −1.00 Nm 

(for the right rotation), respectively. For example, moment load MX was the product of the 

distance between the C0 mass center and the X67-axis times a force applied to the C0 mass 

center and perpendicular to the X67-axis. Once the moment load was defined, the distance 

and the force were automatically calculated by LS-DYNA. These values of moment loads 

were obtained from experiments (Panjabi et al., 2001; Wheeldon et al., 2006) to ensure the 

experimental and simulation conditions were the same in order to validate the rotation 

angles under the same load situation. The load curve of each pure moment began from zero, 

increased to the assigned moment value at the time t = 1 s, and remained the same until the 

end of the simulation.

During the simulation, LS-DYNA software determined the time step as 5 × 10−6 s based on 

convergent criteria, and the results were saved every 0.04 s. Using the medium size new 
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headform, 16 different simulations (4 s pure moment load) were conducted. A simulation 

usually took ~3 s to reach a static posture. At the static posture, the velocity and the 

deformation rate of the headform were essentially zero. The rotation angles of C0−C1 to 

C6−C7 along the seven local coordinate systems were calculated at the end of each 

simulation and were compared with results from experiments in the literature (Panjabi et al., 
2001; Wheeldon et al., 2006).

RESULTS

For validating the head movements, the new medium size headform was used as one 

example to show the movement results with different external moments. Rotation angles for 

individual joints (between each pair of adjacent vertebrates) were compared. For validating 

the extent of flexion and extension of the new medium headform, Fig. 3 provides a 

comparison of rotation angles for the flexo-extension simulations for C2–C7 and reported 

flexo-extension experimental results (Wheeldon et al., 2006). Differences in rotation angles 

between the simulation results and experimental results were calculated. The maximum 

deviations were within ±1.5°. Thus, for flexo-extension, the simulation rotation angles 

agreed well with the experimental rotation angles from Wheeldon et al. (2006).

The rotation angles of C0–C1 and C1–C2 for headform flexo-extension were also validated. 

Fig. 4 showed a comparison of rotation angles between the simulations and the literature 

(Panjabi et al., 2001) for headform flexo-extension under the moments of MX = −1.0 Nm 

(extension) and MX = 1.0 Nm (flexion). The maximum difference in C0–C1 and C1–C2 

joint rotation angles between the simulation results and experimental results was 2.74°, the 

difference of C1–C2 rotation angles in flexion.

The simulation results of the joint rotation angles in the left rotation were the same as their 

corresponding joint rotation angles in the left rotation. Fig. 5 shows a comparison of rotation 

angles between the simulations and the literature (Panjabi et al., 2001) for headform rotation 

under the moments of MX = 0.33, 0.67, and 1.0 Nm independently. The maximum 

difference appeared at the C1–C2 joint rotation angle with applied moment of MY = 0.33 

Nm, for which the simulation result was 6.11° smaller than the experimental result. In the 

simulations with the applied moments of MX 1.00 Nm, the C1–C2 joint rotation angle 

deviations between the simulations and experiments were within ±2.6°, relatively small 

compared with the C1–C2 joint rotation angles (±22.4°).

DISCUSSION

The purpose of developing the motile headform models is to study the effects of head 

movement on contact pressure between a headform and a respirator during a respirator face 

seal test. The contact pressure is related to the respirator face seal characteristics. Thus, the 

cervical spine model in this study was simpler than that developed by del Palomar et al. 
(2008), which had deformable models as intervertebral discs, truss elements as ligaments, a 

contact pair as the axis and the transverse ligament, and contact pairs as facet joints. These 

deformable models of the intervertebral discs could simulate internal stresses and strains of 

the intervertebral discs, and the contact pairs could calculate contact pressures at the contact 
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interfaces in the cervical spine model. However, the internal stresses and strains of the 

intervertebral discs and the contact pressures at the contact interfaces in the cervical spine 

model were not of concerns in the present study. As the dynamic calculations of deformable 

bodies and the surface contacts are computationally expensive, each cervical vertebra was 

considered as a rigid body in the cervical spine model. The authors do not expect this 

assumption to cause significant errors in the face seal characteristics.

In the validation for flexo-extension of individual cervical joints, the maximum deviations 

were within ±1.5° for C2–C7 joint rotation angles and within ±2.74° for C0–C2 joint 

rotation angles. Thus, for flexion and extension, the simulation rotation angles agreed well 

with the experimental rotation angles. For the left and right rotation, both the experimental 

results and simulation results had a similar pattern that the C1–C2 joints showed the highest 

rotation angles (~22°). The C1–C2 joint rotation angle differences between the simulations 

and experiments were ±6 11° (with ° (with MY = ±0.33 Nm moment load), ±3.09° (with MY 

= ±0.67 Nm moment load), and ±2.65° (with MY = ±1 Nm moment load).

There were several potential error sources. The experimental C1–C2 joint rotations in left 

and right rotation had a neutral zone, in which the C1–C2 joint rotation angle with MY = 0 

Nm had an uncertain value in a range between −20° and 20°. The simulation C1– C2 joint 

rotation angles in left and right rotation did not have this neutral zone and always had certain 

values. The reason not to simulate the neutral zone was that a contact simulation between the 

motile headform and a respirator with head movement required certain C0–C1 to C6–C7 

joint rotation angles instead of uncertain values caused by the neutral zone. The simulation 

C1–C2 joint rotation angles with MY = ±0.33 Nm were ±13.9° (31% different from their 

corresponding experimental joint rotation angles) and were within the value range of C1–C2 

joint rotation angle from the experimental neutral zone. Although C1–C2 joint angle 

deviation was relatively large, the total resultant (accumulated) neck joint angles were 

similar between simulation and experimental results. We do not expect any significant 

negative effect of these errors on the study of motile headform-respirator contact.

The second error source was caused by treating the intervertebral discs as spherical joints. 

For more accurate results, the intervertebral discs could be modeled as FE solid models (del 

Palomar et al., 2008). A third potential source of error was due to the multilayer headform 

model. Headforms were included in the head movement simulations for validation. 

However, the experimental samples consisted of seven cervical vertebrae and ligamentous 

soft tissues and did not have skin, muscle, fatty tissue, or nonvertebral bony components.

An advantage of the motile headform models was that the head movements can be simulated 

by applying a single external moment load on C0 (the back of the head). The ranges of the 

external moment loads were 0–2 Nm for head flexo-extension and 0–1 Nm for head rotation. 

The final position of the head movement was the combination of C0–C7 joint rotations. In a 

motile headform-respirator contact simulation with head movement, the head motion can be 

controlled either by defining the seven joint rotation angles or by applying an external 

moment load. However, it is more convenient to apply an external moment load than to 

individually input seven joint rotation angles.
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The new headform models with movement capability were developed and validated. These 

models will be used for respirator simulations and results will be presented in a separate 

paper.
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Fig. 1. 
(a) The cervical spine model; (b) The new FE headform model with the global coordinate 

system.
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Fig. 2. 
The C3–C4 local coordinate system.
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Fig. 3. 
Comparison of rotation angles between the simulations and the literature (Wheeldon et al., 
2006) for headform flexo-extension under the moments of MX = −2.0, −1.5, −1.0, −0.5, 

−0.33, 0.33, 0.5, 1.0, 1.5, and 2.0 Nm.
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Fig. 4. 
Comparison of rotation angles between the simulations and the literature (Panjabi et al., 
2001) for headform flexo-extension under the moments of = −1.0 Nm (extension) and =1.0 

Nm (flexion).
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Fig. 5. 
Comparison of rotation angles between the simulations and the literature (Panjabi et al., 
2001) for headform rotation under the moments: (a) MX = 0.33 Nm; (b) 0.67 Nm; and (c) 

1.0 Nm.
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Table 1

Stiffness and damping values for intervertebral discs, ligaments, and facet joints in the cervical spine model

Tissue Stiffness Damping Source

Joints for the intervertebral discs and the den-arc Flexion Nonlinear 1.5 Nms rad−1 Wheeldon et al. (2006) and van der Horst 
(2002)

Extension Nonlinear 1.5 Nms rad−1

Rotation Nonlinear 1.5 Nms rad−1 Panjabi et al. (2001) and van der Horst (2002)

Ligaments ALL 16 N mm−1 4e-4 Ns mm−1 Yoganandan et al. (2001)

PLL 25 N mm−1 4e-4 Ns mm−1

CL 19 N mm−1 4e-4 Ns mm−1

ISL 7 N mm−1 4e-4 Ns mm−1

AM 24 N mm−1 4e-4 Ns mm−1

LF 25 N mm−1 4e-4 Ns mm−1

Facet joints JC 32 N mm−1 4e-4 Ns mm−1

AM, anterior membrane; ALL, anterior longitudinal ligament; CL, cervical ligament; FL, flaval ligament; ISL, interspinous ligament; JC, joint 
capsules; LF, ligamentum flavum; PLL, posterior longitudinal ligament.
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Table 3

Elements of new headforms

Headform Solid elements Shell elements Discrete elements

Large 71 440 59 005 68

Medium 56 937 54 084 68

Small 40 400 51 370 68

Long/narrow 56 197 57 520 68

Short/wide 53 942 53 791 68
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Table 4

Definitions of moment loads for overall head movements (Van der Horst, 2002)

Moment load (Nm) Name

+MX = 0.33, 0.5, 1.0, 1.5, and 2.0 Flexion

−MX = −0.33, −0.5, −1.0, −1.5, and −2.0 Extension

+MY = 0.33, 0.67, and 1.00 Left rotation

−MY = −0.33, −0.67, and −1.00 Right rotation
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